Garritt Tucker

Director of Graduate Studies and 
Associate Professor, Mechanical Engineering

Garritt TuckerProfessor Tucker joined the Mechanical Engineering department at Mines in the summer of 2017 as an Assistant Professor, and is now an Associate Professor who is active in the interdisciplinary Materials Science program at Mines. Before joining the faculty at Mines, he spent four years as an Assistant Professor in the Department of Materials Science and Engineering at Drexel University (Philadelphia, PA), and two years as a Postdoctoral Research Appointee at Sandia National Laboratories (Albuquerque, NM) in the Computational Materials and Data Science group. While at Drexel, he was awarded the Outstanding Teacher Award in 2015 and the TMS Young Leader Professional Development Award in 2016. Professor Tucker earned his PhD in 2011 from the Georgia Institute of Technology (School of Materials Science and Engineering), and a BS in 2004 from Westminster College (Salt Lake City, UT) majoring in both Physics and Mathematics. During his time at Westminster and Georgia Tech, he received several distinctions including the Outstanding Physics Senior Award, Academic All-American (Soccer), and a Sigma Xi nomination.

His research group at Mines integrates high-performance computing and theory to discover the fundamental structure-property relationships of materials that will enable the predictive design of advanced materials with tunable properties. Of particular interest are materials where defects and interfacial-driven properties can be effectively tuned or controlled to enable property enhancement, such as nanocrystalline alloys, multicomponent laminates, materials for energy storage, 2D materials, and hierarchical metals. At the core of his group’s approach is to develop collaborations and programs that effectively mesh computation with experiment to tailor functional materials.

Recent work by Prof. Tucker and his group has provided unprecedented understanding into a new defect in layered materials that influences not only the strength of the material, but also other advantageous properties such as strain reversibility and kinking nonlinear elastic response. His work has also addressed many outstanding questions regarding grain boundary properties and structure in metals, and extended this idea to modeling realistic material microstructures. A significant focus has been on providing a fundamental understanding of the mechanics and physics of nanocrystalline alloys – quantifying the roles of grain boundaries, dislocations, and twinning. Their work has recently highlighted how microstructural features can be altered to systemically tailor the operative nanoscale deformation mechanisms within metallic materials. Prof. Tucker’s research group leverages a number of computational methods to research materials and their properties, such as density functional theory, atomistic modeling (e.g., molecular dynamics and statics), phase-field models, and a number of multiscale modeling approaches. Beyond those traditional computational methods, Prof. Tucker and his research group also employ innovative postprocessing tools for data analysis and visualization, and pursue novel informatics techniques to build predictive methodologies for materials design.


Brown Hall W350F


Labs and Research Centers



  • BS, Physics and Mathematics, Westminster College
  • PhD, Materials Science and Engineering, Georgia Institute of Technology

Recent Projects

  • Mechanical properties and thermo-mechanical stability of Nanostructured Metal Alloys
  • Automated development of material microstructures for High-Performance Computing
  • Multi-resolution studies of ripplocations: a new defect in layered solids
  • Predictive design of microstructures: engineering grain boundaries

Recent Publications


  • Gupta, A., Zhou, X., Thompson, G. B., Tucker, G. J. “Role of Grain Boundary Character and Its Evolution on Interfacial Solute Segregation Behavior in Nanocrystalline Ni-P.” Acta Materialia In Press (2020).
  • Rajaram, S. S., Gupta, A., Thompson, G. B., Gruber, J., Jablokow, A., Tucker, G. J. “Grain-Size-Dependent Grain Boundary Deformation During Yielding in Nanocrystalline Materials Using Atomistic Simulations.” JOM 72:1745–1754 (2020).
  • Gruber, J., Barsoum, M. W., Tucker, G. J. “Characterization of Ripplocation Mobility in Graphite.” Materials Research Letters 8(2):82–87 (2020).


  • Plummer, G., Tucker, G. J. “Bond-Order Potentials for the Ti3AlC2 and Ti3SiC2 MAX Phases.” Physical Review B 100:214114 (2019).
  • Pan, J., Cordell, J., Tucker, G. J., Tamboli, A. C., Zakutayev, A., Lany, S., “Interplay Between Composition, Electronic Structure, Disorder, and Doping due to Dual Sublattice Mixing in Nonequilibrium Synthesis of ZnSnN2:O.” Advanced Materials 31(11):1807406 (2019).
  • Spearot, D. E., Tucker, G. J., Gupta, A., Thompson, G. B. “Mechanical Properties of Stabilized Nanocrystalline FCC Metals.” Journal of Applied Physics 126(11):110901 (2019).
  • Plummer, G., Anasori, B., Gogotsi, Y., Tucker, G., J. “Nanoindentation of Monolayer Tin+1CnTx MXenes via Atomistic Simulations: The Role of Composition and Defects on Strength.” Computational Materials Science 157:168–174 (2019).
  • Barsoum, M. W., Zhao, X., Shanazarov, S., Romanchuk, A., Koumlis, S., Pagano, S. J., Lamberson, L., Tucker, G. J. “Ripplocations: A Universal Deformation Mechanism in Layered Solids.” Physical Review Materials 3:013602 (2019).
  • Tiwari, S., Tucker, G. J., McDowell, D. L. “The Effect of Hydrostatic Pressure on the Shear Deformation of Cu Symmetric Tilt Interfaces.” International Journal of Plasticity 118:87–104 (2019).


  • Foley, D. J., Coleman, S. P., Tschopp, M. A., Tucker, G. J. “Correlating Deformation Mechanisms with X-ray Diffraction Phenomena in Nanocrystalline Metals Using Atomistic Simulations.” Computational Materials Science 154:178–186 (2018).
  • Freiberg, D., Barsoum, M. W., Tucker, G. J. “Nucleation of Ripplocations Through Atomistic Modeling of Surface Nanoindentation in Graphite.” Physical Review Materials 2:03602 (2018).
  • Chu, K., Gruber, J., Zhou, X. W., Jones, R. E., Lee, S. R., Tucker, G. J. “Molecular Dynamics Studies of InGaN Growth on Nonpolar (11‾2‾0) GaN Surfaces.” Physical Review Materials 2:013402 (2018).


  • Barsoum, M. W., Tucker, G. J. “Deformation of Layered Solids: Ripplocations Not Basal Dislocations.” Scripta Materialia 139:166–172 (2017).
  • Gruber, J.., Zhou, X. W., Jones, R. E., Lee, S. R., Tucker, G. J. “Molecular Dynamics Studies of Defect Formation During Heteroepitaxial Growth of InGaN Alloys on (0001) GaN Surfaces.” Journal of Applied Physics 121(19):195301 (2017).
  • Zhang, Y., Tucker, G. J., Trelewicz, J. R. “Stress-Assisted Grain Growth in Nanocrystalline Metals: Grain Boundary Mediated Mechanisms and Stabilization Through Alloying.” Acta Materialia 131:39–47 (2017).
  • Griggs, J., Lang, A. C., Gruber, J., Tucker, G. J., Taheri, M. L., Barsoum, M. W. “Spherical Nanoindentation, Modeling, and Transmission Electron Microscopy Evidence for Ripplocations in Ti3SiC2.” Acta Materialia 131:141–155 (2017).
  • Gruber, J., Lim, H., Abdeljawad, F., Foiles, S., Tucker, G. J. “Development of Physically Based Atomistic Microstructures: The Effect on the Mechanical Response of Polycrystals.” Computational Materials Science 128:29–36 (2017).


  • Shumeyko, C. M., Webb, E. B., Tucker, G. J. “Effects of Grain Boundary Structure on Lithium Transport in Graphite.” Molecular Simulation 42(16):1356–1363 (2016).
  • Foley D., Tucker, G. J. “Quantifying Grain Boundary Damage Tolerance with Atomistic Simulations.” Modelling and Simulation in Materials Science and Engineering 24(7):075011 (2016).
  • Gruber, J., Lang, A. C., Griggs, J., Taheri, M. L., Tucker, G. J., Barsoum, M. W. “Evidence for Bulk Ripplocations in Layered Solids.” Scientific Reports 6(1):1–8 (2016).
  • Liu, R., Gruber, J., Bhattacharyya, D., Tucker, G. J., Antoniou, A. “Mechanical Properties of Nanocrystalline Nanoporous Platinum.” Acta Materialia 103:624–632 (2016).
  • Tucker, G. J., Foley, D., Gruber, J. (2016) Continuum Metrics for Atomistic Simulation Analysis. In: Weinberger C., Tucker G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham.
  • Jones, R. E., Weinberger, C. R., Coleman, S. P., Tucker, G. J. (2016) Introduction to Atomistic Simulation Methods. In: Weinberger C., Tucker G. (eds) Multiscale Materials Modeling for Nanomechanics. Springer Series in Materials Science, vol 245. Springer, Cham.

See more in Google Scholar